Efficacy of Hilbert and Wavelet Transforms for Time-Frequency Analysis
نویسنده
چکیده
Two independently emerging time-frequency transformations in Civil Engineering, namely, the wavelet transform and empirical mode decomposition with Hilbert transform EMD+HT , are discussed in this study. Their application to a variety of nonstationary and nonlinear signals has achieved mixed results, with some comparative studies casting significant doubt on the wavelet’s suitability for such analyses. Therefore, this study shall revisit a number of applications of EMD+HT in the published literature, offering a different perspective to these commentaries and highlighting situations where the two approaches perform comparably and others where one offers an advantage. As this study demonstrates, much of the differing performance previously observed is attributable to EMD+HT representing nonlinear characteristics solely through the instantaneous frequency, with the wavelet relying on both this measure and the instantaneous bandwidth. Further, the resolutions utilized by the two approaches present a secondary factor influencing performance. DOI: 10.1061/ ASCE 0733-9399 2006 132:1
منابع مشابه
Fourier, Wavelet, and Hilbert-Huang Transforms for Studying Electrical Users in the Time and Frequency Domain "2279
The analysis of electrical signals is a pressing requirement for the optimal design of power distribution. In this context, this paper illustrates how to use a variety of numerical tools, such as the Fourier, wavelet, and Hilbert-Huang transforms, to obtain information relating to the active and reactive power absorbed by different types of users. In particular, the Fourier spectrum gives the m...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملFixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms
The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...
متن کاملApproximate Dynamic Analysis of Structures for Earthquake Loading Using FWT
Approximate dynamic analysis of structures is achieved by fast wavelet transform (FWT). The loads are considered as time history earthquake loads. To reduce the computational work, FWT is used by which the number of points in the earthquake record are reduced. For this purpose, the theory of wavelets together with filter banks are used. The low and high pass filters are used for the decompositi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006